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Reptiles are important model systems for examining the effect of temperature during development on the
phenotype of individuals after hatching or birth. To assess whether squamate embryos exhibit adaptive variation
in thermal biology, we derived three parameters: an index of developmental rate (DRI), the upper thermal limit
for successful incubation, and the lower thermal limit for development for 28 species of lizard and 12 species of
snake. The associations between developmental parameters and climatic and life-history variables were examined
using both conventional statistics and phylogenetically controlled analyses. Residual DRI (i.e. DRI corrected for
stage at oviposition and hatchling mass) was strongly associated with phylogenetic relationship. By contrast, the
upper limit for development was negatively related to the amount of precipitation during the warmest quarter of
the year, and the lower thermal limit for development was positively related to temperature during the warmest
quarter of the year and the activity body temperatures of adults. These latter observations indicate that embryonic
thermal physiology is adapted to large-scale environmental patterns, and that global climate change will impact
embryonic development directly through impacts on nest temperature per se, as well as indirectly through impacts
on the ability of gravid females to select suitable nest sites. © 2012 The Linnean Society of London, Biological
Journal of the Linnean Society, 2012, 106, 851–864.
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INTRODUCTION

Temperatures experienced by embryos during devel-
opment are critically important to individual fitness.
Phenotypic attributes affected by incubation tempera-
ture include survival to hatching or birth and the
morphology, locomotory performance, thermal prefer-
ence, growth rate, behavior, and sex of neonates
(Janzen & Paukstis, 1991; Downes & Shine, 1995;
Shine, Elphick & Harlow, 1997; Booth, 2006; DuRant
et al., 2010; Hopkins et al., 2011). Temperature sensi-
tivity is especially important for the ectothermic
vertebrates that are oviparous because their embryos
are exposed to environmental temperatures as they
develop (Packard & Packard, 1988). Reptiles have
thus become important model systems for examining
the effect of incubation temperature on phenotype.
Surprisingly, thermal adaptations of reptile embryos
have yet be examined in a broadly comparative

context, especially given the impressive range of char-
acterizations of thermal adaptations of adults (Huey,
1982; van Berkum, 1986; Clusella-Trullas, Blackburn
& Chown, 2011).

Thermal adaptations of adult reptiles, for example,
have been examined using parameters derived from
thermal performance curves (Huey & Stevenson,
1979). A performance curve is the relationship
between some measure of individual fitness (e.g. sur-
vival, digestive efficiency, sprint speed) and body
temperature. The shape of this curve is described by
parameters such as the optimal body temperature
(where performance is maximal), the optimal
temperature range (OTR; where performance is above
some threshold level, e.g. 90% of maximum), the
minimum temperature at which performance can
occur, and the maximum temperature at which
performance can occur. The activity body temperature
of adults in nature (Tb) or the body temperature
selected by adults in a thermal gradient (Tsel) in the
laboratory is the body temperature at which many*Corresponding author. E-mail: randrews@vt.edu

Biological Journal of the Linnean Society, 2012, 106, 851–864. With 2 figures

bs_bs_banner

© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106, 851–864 851



performance characteristics are optimized (Huey,
1982). Exposure of embryos to environmental
temperatures, and their inability to thermoregulate
behaviourally, suggests that they should be adapted
to their thermal environments (i.e. exhibit variation
in thermal parameters on geographical gradients, as
do adults).

Using methodological approaches pioneered by
Huey & Stevenson (1979), we defined developmental
parameters (Fig. 1) from performance curves that
relate hatching success (e.g. survival to hatching

and/or viability of hatchlings, a direct assay of indi-
vidual fitness) to incubation temperature. These
parameters are the optimal temperature for develop-
ment (Topt) the lowest temperature at which develop-
ment occurs (T0), and an index of the rate of
development (DRI) in the OTR. We expected that
developmental rates and thermal limits for successful
development of reptiles would exhibit adaptive varia-
tion on a global scale. This expectation is supported
by observations of intraspecific variation in develop-
mental parameters on climatic gradients (Qualls &
Shine, 1998; Du et al., 2010; Weber et al., 2012). On
the other hand, developmental parameters may be
sufficiently plastic to accommodate at least some
degree of climatic variation, given that embryos
cannot accommodate change in the environment
behaviourally or the thermal adaptations of embryos
may be more strongly influenced by evolutionary rela-
tionships rather than by their immediate physical
environment, or both. In either of these latter situa-
tions, large-scale patterns of adaptation would not be
evident in comparative analyses.

The present study aimed: (1) to determine the
extent to which variation in the thermal biology of
embryonic squamates is adaptive; (2) to identify the
factor or factors that act as selective agents on the
thermal biology of embryos; and (3) to place variation
in the temperature dependence of development in the
context of global climate change. Thermal adapta-
tions of embryos could potentially exacerbate the
negative effects of climate change predicted on the
basis of adult thermal biology (Kearney et al., 2009;
Sinervo et al., 2010), or perhaps, mitigate such effects,
at least in the short term. Embryonic adaptations
of viviparous species are considered elsewhere
(Schwarzkopf & Andrews, in press) because their
thermal adaptations should parallel those of adults
(Arnold & Peterson, 2002; Caley & Schwarzkopf,
2004; Lourdais et al., 2004), and thus be comparably
affected by climatic change.

MATERIAL AND METHODS
SPECIFIC TESTS OF CLIMATIC AND

LIFE-HISTORY HYPOTHESES

For specific tests of ‘climate’ hypotheses, we predicted
that the index of developmental rate should be more
related to indices of seasonality than to annual means
of climatic variables. Highly seasonal environments,
for example, have restricted periods for reproduction
and hence provide ‘counter-gradient’ selection for
rapid embryonic growth. By contrast, because Topt and
T0 are indices of the upper and lower thermal limits
for development, we hypothesized that those thermal
limits would be correlated with ambient temperatures

Figure 1. Developmental performance of Elaphe taeniura
embryos (sensu Du & Ji, 2008). A, performance curve
relating hatching success to incubation temperature. The
optimal temperature range (OTR) is indicated. Note the low
hatching success at incubation temperatures above and
below the OTR. B, the relationship between developmental
rate (DR = 1/incubation length) and incubation tempera-
ture. The slope of the regression for observations within the
OTR is the developmental rate index (DRI). The highest
incubation temperature in the OTR is Topt. The intercept
(T0) is the temperature when the rate of development is 0.
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experienced during the period of incubation, typically
during the warmest period of the year.

For specific tests of ‘life-history’ hypotheses, it was
hypothesized that DRI would be positively related to
adult body size independent of the physical environ-
ment. Species with large adult body sizes have rela-
tively large hatchlings and commensurately long
incubation periods (Andrews, 1982, 2004); rapid
embryonic growth rates may be favoured by selec-
tion to compensate for long incubation periods. By
contrast, we hypothesized that Topt and T0 would be
correlated with the body temperatures of adults (Tb).
Adult body temperature is associated with habitat
(Huey & Webster, 1976; Clusella-Trullas et al., 2011),
and, in general, females nest in the habitats where
they live (Lu et al., 2006). Temperatures experienced
by embryos in the nest may thus be related to the
body temperature of adults.

EMBRYONIC PERFORMANCE CURVES

Data on hatching success, incubation length, and
incubation temperature were obtained from a survey
of the primary literature (see Appendix). We used
observations at constant temperatures to allow
comparisons among studies. Although nest tempera-
tures in nature normally fluctuate on diel and sea-
sonal cycles, hatching success and incubation length
at constant as well as at fluctuating temperatures
with the same mean do not differ as long as tempera-
tures do not fluctuate to detrimental extremes (Shine
& Harlow, 1996; Andrews, Mathies & Warner, 2000;
Du & Ji, 2006; Lin et al., 2008; Du & Shine, 2010;
Oufiero & Angilletta, 2010). If observations were made
at different substrate water contents, we used the
observation that maximized egg survival at each incu-
bation temperature. Important ancillary information
recorded was: hatchling mass, running speed and
frequency of abnormalities as a function of tempera-
ture, and embryonic stage at oviposition.

Embryonic performance curves for squamate
embryos typically have flat tops and steeply descend-
ing sides, as illustrated by Elaphe taeniura (Fig. 1A);
for a similarly-shaped curve characterizing jump
distances of Rana clamitans, see Huey & Stevenson,
(1979). Twenty-eight (85%) of the 33 species for which
hatching success was reported, had such ‘staple-
shaped’ performance curves. We therefore defined the
OTR to include those temperatures at which hatching
success is high (mean = 83.3%, range = 76–100%,
N = 28). For these 28 species, temperatures outside the
OTR were characterized by low hatching success, and,
when the information was available, by high frequen-
cies of developmental abnormalities, poor running
performance, and low viability of hatchlings. For
species for which hatchling success was not reported or

was judged unreliable (N = 7 and 5, respectively), we
selected the linear section of relationship between
developmental rate and temperature as the OTR (see
below). We did not use nonlinear curve-fitting tech-
niques (Bulté & Blouin-Demers, 2006) to characterize
the shape of the embryonic performance curves
because the data sets for most species did not include
sufficient observations above and below the OTR to
define shape accurately (Table 1).

MEASURES OF EMBRYONIC DEVELOPMENTAL

PARAMETERS: DRI, TOPT, AND T0

The OTR (see above) established from developmental
performance curves was used to establish three devel-
opmental parameters for each species. The develop-
mental rate index (DRI) is the slope of the regression
of developmental rate on incubation temperature for
observations in the OTR (Fig. 1B). Developmental rate
is the reciprocal of incubation length (Shine & Harlow,
1996; Jarosik et al., 2004), a transformation that
linearizes the relationship between incubation length
and temperature within the OTR. DRI is an overall
index of developmental rate; species with high values
of DRI also have high absolute developmental rates at
temperatures in the OTR. DRI is positively correlated
with developmental rate at 23 °C, which is at the
low end of the OTR for most species (F1,38 = 41.8,
P < 0.0001, R2 = 0.51). The association is stronger at
30 °C (F1,38 = 224.9, P < 0.0001, R2 = 0.85), the modal
value of the highest incubation temperature in the
OTR. DRI is related to the stage at oviposition (Stage)
and hatchling mass (Hmass) (Birchard & Marcellini,
1996; Andrews & Mathies, 2000) as:

DRI Stage Log Hmass= − + −0 00207 0 000144 0 0010 10. . .
F P R2 30

29 8 0 001 0 40, . , . , . ,= < =( )

and both Stage and Log10Hmass contribute significantly
to the overall model (P = 0.0024 and 0.0003,
respectively). Therefore, Studentized residuals of this
relationship (ResidDRI) were used in all subsequent
analyses to control for when in development eggs are
laid and the size of hatchlings.

Table 1. Numbers of studies in which eggs were incu-
bated at temperatures below the optimal temperature
range (OTR), above the OTR, and within the OTR

Number of
observations 0 1 2 3 4–6 Total

Below OTR 30 7 3 0 0 40
Above OTR 12 22 6 0 0 40
Within OTR 0 0 12 17 11 40
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The second performance parameter is Topt, the
highest incubation temperature in the OTR (Fig. 1B).
This temperature is ‘optimal’ because, on the one
hand, incubation length decreases with temperature,
eggs incubated at Topt have relatively short incubation
periods. Short incubation periods may reduce the
risk of egg mortality as a result of predation and/or
provide enhanced opportunities for growth of neonates
in seasonal environments because hatching occurs
relatively early (Shine, 1985; Olsson & Shine, 1997;
Brown & Shine, 2006; Warner & Shine, 2007). On
the other hand, incubation temperatures higher than
Topt are physiologically stressful as indicated by
reduced rates of development, decreased hatching
size, increased abnormalities, and increased mortality.
Because experimental temperatures are systemati-
cally biased (i.e. they are often widely spaced and/or
selected to avoid potentially stressful temperatures);
however, our estimates of Topt are likely lower than
their ‘true’ values. We assume that this bias is ran-
domly distributed in the data set and will not affect
the conclusions of comparative analyses.

The third performance parameter is the lower limit
of temperature at which development occurs (T0;
Fig. 1B). T0 was estimated as the temperature at
which DRI was zero as extrapolated from individual
regressions of developmental rate on incubation tem-
perature (Shine & Harlow, 1996) for observations in
the OTR. Although hatching success at constant tem-
peratures approaching T0 is low, T0 has biological
significance because some development presumably
occurs during short-term exposure when nest tem-
perature approaches T0 during normal diel or sea-
sonal fluctuations (Du & Shine, 2010).

INDICES OF PHYSICAL ENVIRONMENTS OF EMBRYOS

Standard climatic data were used to characterize the
environment of each species at the latitude and lon-
gitude of the study site. For species whose initial
source was unknown (Chamaeleo calyptratus,
Paroedura pictus, Eublepharis macularius), we arbi-
trarily selected a latitude and longitude at the center
of their geographical range. Climatic data were
accessed from WorldClim (Hijmans et al., 2005) for all
species except Zootoca vivipara for which data were
from González Taboada & Anadón Álvarez (2011). To
minimize problems associated with ‘data dredging’
and ‘overfitting’, we limited the number of climatic
variables used in the statistical models (Anderson,
2008; Knape & de Valpine, 2011). Climatic variables
were selected to test the specific a priori hypotheses:
indices of seasonality (Tseas, SD of monthly values of
mean annual temperature, and Pseas, the coefficient of
variation for mean monthly precipitation) and tem-
perature and rainfall during the time of year when

squamate reproduction typically occurs (Twarm, mean
temperature of the warmest quarter of the year, and
Pwarm, precipitation during the warmest quarter of the
year). Mean annual temperature (Tann) and mean
annual precipitation (Pann) were used, in part, as
control variables with the rationale that, as general
descriptors of climate, they should perform more
poorly than specific climatic variables associated with
the time of year when development occurs. Observa-
tions of Twarm were transformed as (Twarm/10)3.75 to
meet normality criteria.

LIFE-HISTORY VARIABLES

Choice of predictor variables for the life-history
hypotheses was limited to observations widely avail-
able in the literature because studies on embryonic
development seldom included information on adults.
The first was mean activity temperature of adults
(Tb). Field measures of active body temperatures
(daytime Tb for diurnal species and night-time Tb for
nocturnal species) were used to characterize the
thermal niche of adults. Selected body temperatures
from laboratory studies were used when Tb was
not available. When Tb was available for different
seasons, we used the highest mean value provided.

The second life-history variable was adult body
size. We characterized adult body size as the mass of
the largest adult individual recorded for each study
population or species. Maximum snout–vent length
(SVL) was converted to mass using the mass–SVL
relationships for Sceloporus occidentalis for lizards
(Andrews, 1982) and Waglerophis merremii for snakes
(Vitt, 1983). The use of maximum SVL to estimate
asymptotic species size is appropriate for some squa-
mates at least (Stamps & Andrews, 1992), and for the
present study in particular, given that adult mass
spanned three orders of magnitude (7–4655 g); impre-
cision in estimated size for any one species is small
compared to the variance in size among species.

PHYLOGENETIC RELATIONSHIPS

To determine whether relationships between develop-
mental parameters and predictor variables were con-
founded by phylogenetic relationships, we compared
results of conventional phylogenetically uncontrolled
(PU) and phylogenetically controlled (PC) analyses.
Conventional statistical procedures were conducted
using JMP, version 8.0.1 (SAS Institute). Phylogeneti-
cally controlled analyses were conducted using the
PDAP: PDTREE module in MESQUITE (Midford,
Garland & Maddison, 2005; Maddison & Maddison,
2009). Analyses were based on a composite phyloge-
netic tree constructed from independent molecular
phylogenies. Relationships of squamate families were
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conducted based on those reported by Wiens (2008).
For families with three or more species, relationships
were based those reported by Gamble et al. (2008) and
A. Bauer (unpublished data) (gekkotans); Brandley,
Schmitz & Reeder (2005), Honda et al. (2000),
Skinner (2007), and Smith et al. (2007) (Scincidae);
Ota et al. (2002) and Hipsley et al. (2009) (Lac-
ertidae); Wang et al. (1999), Utiger et al. (2002) and
Wiens et al. (2008) (snakes); Schulte, Valladares &
Larson (2003) (Iguanidae sensu lato); and Hugall
et al. (2008) (Agamidae). Phylogenies were pruned
to include only the subset of species for which data
were available for all pertinent variables. Branch
lengths were set to 1.0 or transformed so that they
met diagnostic criteria for independent contrasts
analyses. If variables were significantly correlated in
both the PU and PC analyses, we judged that their
relationship was independent of phylogeny (Midford
et al., 2005).

STATISTICAL ANALYSIS

To evaluate relationships between embryonic perfor-
mance measures and climatic and life-history
predictor variables, we built independent sets of
models for DRI, Topt, and T0. Climate variables that
were correlated (P < 0.10) were not included in the
same model (e.g. Tann and Twarm, Pann and Pwarm). Infor-
mation theoretic approaches based on Akaike’s infor-
mation criterion (AICc) were used for model selection
(Burnham & Anderson, 2002; Anderson, 2008). This
approach provides an objective process by which to
rank and compare models and thus obviates biases
associated with stepwise regression and similar
approaches (Whittingham et al., 2006). AICc and log
likelihood values for each model were obtained using
general linearized models (JMP, version 8.0.1).
Because of the small number (N = 5–8) of models, we
report AICc values for all of them. Relative model
weights (wi) were used to rank models; wi is a relative
estimate of the weight of evidence in favour of i being
the best model (Burnham & Anderson, 2002).

Data collected on development, adult life history,
and climate used in analyses are available upon
request.

RESULTS

We found sufficient information on 40 species of squa-
mate, representing two families of snakes and seven
families of lizards, that enabled characterizion of the
performance curves and/or developmental parameters
(Table 1). The number of observations within the OTR
was in the range 2–6 (mode = 3). Approximately
two-thirds of the species (N = 28) had one or more
observations above the OTR. By contrast, only ten of

40 species had observations (1–2) below the OTR.
Because of missing data for stage at oviposition
for seven species, ResidDRI was determined for 33
species. Missing data for Tb for 12 species limited the
sample size for analyses in which Topt and T0 were
dependent variables to 28.

The most highly ranked model for predicting Resid-
DRI involved only Tseas (Table 2). This model was
three-fold better than the second ranked model and
more than five-fold better than the remaining
models. ResidDRI was related to Tseas as Resid-
DRI = -0.970 + 0.000168 Tseas (F1,31 = 4.9, P = 0.035,
R2 = 0.136, least squares analysis). ResidDRI and
Tseas, however, were not correlated in the phylogeneti-
cally corrected analyses (Table 3). This result indi-
cates that the association between these variables
was removed by accounting for phylogeny.

The most highly ranked model for Topt involved only
Pwarm (Fig. 2A, Table 2). This model was 2.0- and 2.2-
fold more likely than the second and third ranked
models that included Pwarm and Twarm and that
included Tb and Pwarm, respectively, as explanatory
variables. Pwarm was thus included in all three of the
most highly ranked models. Pwarm by itself explained
16% of the variation in Topt (Topt = 31.3–0.00453
Pwarm, F1,26 = 5.11, P = 0.032, R2 = 0.16).

The most highly ranked model for T0 had two
predictor variables, Tb and Twarm. This model was
almost six-fold better than the second ranked model
and more than nine-fold better than the third ranked
model (Table 2). The first ranked model was T0 =
2.51 + 0.360 Tb + 0.065 Twarm (F2,25 = 10.52, P < 0.0001,
R2 = 0.46). Tb (F1,25 = 10.55, P = 0.0033) explained
more variance in T0 than Twarm (F1,25 = 6.17, P = 0.02)
(Fig. 2B, C). The best models for both Topt and T0,
were also supported by phylogenetically controlled
analyses (Table 3). Topt was correlated with Pwarm in
both PU and PC analyses and T0 was correlated with
Tb, Twarm and Tann, in both PU and PC analyses.

DISCUSSION

The thermal biology of squamate embryos varied as a
function of climate, preferred body temperature of
adults, and phylogenetic relationship. Our observa-
tions thus document, for embryos, adaptive and his-
torical parallels with the thermal biology of adults.
For example, in a study involving almost 400 species
of squamate, Clusella-Trullas et al. (2011) report that,
although thermal parameters of adult squamates
are related to climate and life history, models that
included phylogenetic information had greater
explanatory power than those that did not; thus,
phylogenetic effects enhanced conclusions otherwise
based on only climate and life-history variables.
Below, we first discuss the specific results of our
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analyses with regards to phylogeny, climate, and life
history, and then consider our results with regards to
climate change. Because our sample of 40 species is a
relatively small subset of squamates, results from a
wider survey might differ in details of the association
between developmental parameters and climate.
Nonetheless, the present study provides the first
documentation of the widescale adaptation of reptile
embryos to their environment.

DEVELOPMENTAL PARAMETERS AND

PHYLOGENETIC RELATIONSHIPS

The developmental parameters Topt and T0 were
related to climate and/or life history variables inde-
pendent of phylogeny (Tables 2, 3). By contrast, the
apparently strong relationship between ResidDRI and
Tseas in phylogenetically uncontrolled analyses disap-
peared when analyses were controlled for phylogeny.
The reason is that lineages that have high values
of ResidDRI occur in more seasonal environments
than lineages that have low values of ResidDRI but
ResidDRI and Tseas are not correlated within lineages.
For example, mean ResidDRI for families (lacertids,
scincids, elaphids, colubrids, gekkotans, iguanids,
agamids, and chamaeleonids, listed from highest to

lowest values) is positively correlated with mean Tseas

(R = 0.85, P = 0.008, N = 8). Our hypothesis that selec-
tion would favour rapid developmental rates in highly
seasonal environments was therefore rejected.
Rather, the rate of development is a life-history
attribute at the family level. The explanation for this
trend is not obvious. For example, ResidDRI is not
correlated with Tb as might be expected if lineages
with a high Tb also had high developmental rates.
Nonetheless, many life-history attributes are con-
served across taxonomic groups, and therefore not
strongly influenced by adaptation at the species level.
ResidDRI may be linked to such conserved attributes.
Possible linkages are that: (1) the rate of anabolic
processes is taxon specific, such that growth rates of
individuals post-hatching and during development
are correlated, and (2) developmental rate is related
to adult life span, at least in birds and mammals
(Ricklefs, 2010); hence, if life span is taxon-specific in
squamates, then ResidDRI would be linked to phylo-
genetic relationships.

DEVELOPMENTAL PARAMETERS, CLIMATE,
AND LIFE HISTORY

Our prediction that developmental parameters would
be related to climate and to life history was supported

Table 2. Best model determinations for the developmental parameters, ResidDRI, Topt, and T0, using Akaike’s informa-
tion criterion (AICc) (N = 33, 28, and 28, respectively)

Variable Model K –2 log(L) AICc D Likelihood wi

ResidDRI Tseas 3 89.28 96.11 0 1.000 0.547
Tseas, Pseas 4 88.82 98.26 2.15 0.341 0.187
Tann 3 92.55 99.39 3.28 0.194 0.106
Pann 3 93.75 100.58 4.47 0.107 0.059
Log10AdMass 3 93.90 100.73 4.81 0.099 0.054
Pseas 3 94.01 100.84 4.73 0.094 0.051

Topt Pwarm 3 121.06 128.06 0 1.000 0.388
Twarm, Pwarm 4 119.76 129.50 1.44 0.487 0.189
Tb, Pwarm 4 119.90 129.65 1.59 0.452 0.175
Tb 3 123.40 130.40 2.34 0.310 0.120
Pann 3 123.90 130.90 2.84 0.242 0.094
Twarm 3 125.90 132.90 4.84 0.089 0.035
Tann 3 126.02 133.03 4.97 0.083 0.032
Tb, Twarm 4 123.40 133.13 5.07 0.079 0.031

T0 Tb, Twarm 4 121.92 131.67 0 1.000 0.746
Tb 3 128.10 135.11 3.44 0.179 0.133
Tb, Pwarm 4 126.38 136.12 4.45 0.108 0.080
Twarm 3 131.79 138.79 7.12 0.028 0.021
Tann 3 131.90 138.96 7.29 0.026 0.019
Twarm, Pwarm 4 131.28 141.02 9.35 0.009 0.007
Pann 3 138.96 145.96 14.29 0.001 0.001
Pwarm 3 139.03 146.03 14.36 0.001 0.001

DRI, index of developmental rate; wi, relative model weight.
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for Topt and T0. Importantly, the best climatic predic-
tors of Topt and T0 were variables associated with the
incubation period per se; none of the first ranked
models included the ‘control’ variables (annual means
of temperature or precipitation), and models that
included these variables were poorly supported
overall (Table 2). Second, correlations between Topt

and T0 and climate and life-history variables were
independent of phylogeny, implying that these devel-
opmental parameters have evolved in response to the
physical environment of embryos.

We hypothesized that the upper thermal limit for
incubation (Topt) and the lower thermal limit for
development (T0) would be related to ambient tem-
perature experienced during the warmest quarter of
the year and/or to body temperatures of adults. This
expectation was met, although, for Topt, not quite as
expected. Precipitation during the warmest quarter of
the year (Pwarm) (rather than temperature, Twarm, as
expected) was not only the best predictor of Topt but
was included in the top three models. Topt was related
to Pwarm such that the lower the precipitation during
the warmest quarter of the year, the higher Topt. Topt

is the embryonic parallel of adult Tb, the tempera-
tures that maximize the performance of embryos and
adults, respectively. We therefore examined the rela-

tionship between Tb and Pwarm in our data set and also
found an inverse correlation (R = -0.32, P = 0.10,
N = 28). Similarly, in the study by Clusella-Trullas
et al. (2011), the best predictor of adult Tb was

Table 3. Correlation between developmental parameters,
ResidDRI, Topt, and T0, and climatic and life-history vari-
ables in conventional (phylogenetically uncontrolled; PU)
and phylogenetically controlled (PC) analyses

Pairwise
correlations R, PU P R, PC P

ResidDRI: Tseas 0.37 0.035** 0.20 0.26
ResidDRI: Pseas -0.05 0.79 0.07 0.71
ResidDRI: Tann -0.21 0.23 0.11 0.52
ResidDRI: Pann 0.10 0.58 -0.15 0.40
ResidDRI: Log10

AdMass
-0.08 0.68 0.03 0.88

Topt: Tb 0.30 0.12 0.14 0.46
Topt: Twarm 0.08 0.68 0.05 0.78
Topt: Pwarm -0.40 0.032** -0.36 0.057*
Topt: Tann -0.05 0.82 -0.11 0.57
Topt: Pann -0.27 0.16 -0.19 0.34
T0: adult Tb 0.57 0.002** 0.45 0.017**
T0: Twarm 0.48 0.010** 0.57 0.0014**
T0: Pwarm 0.01 0.95 0.31 0.10
T0: Tann 0.47 0.011** 0.64 0.0002**
T0: Pann 0.05 0.80 0.16 0.41

R, correlation coefficients (PU, REML method; PC,
Pearson product-moment correlations). DRI, index of
developmental rate. *P < 0.06, **P < 0.05 (in bold font).
The number of observations is the same as that reported
in Table 2.

Figure 2. Response plots of developmental performance
variables. A, Topt as a function of Pwarm. B, T0 as a function
of Tb. C, T0 as a function of Twarm.

THERMAL PERFORMANCE OF SQUAMATE EMBRYOS 857

© 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106, 851–864



precipitation during the driest month of the year. The
negative relationships between Topt and Tb and pre-
cipitation have a functional interpretation; precipita-
tion is associated with cloud cover (Aguilar et al.,
2005), and hence regions with low cloud cover during
the warmest or driest months of the year would
provide enhanced thermoregulatory opportunities for
adult squamates and warmer nest (soil) temperatures
as well.

Our hypothesis that the lower thermal limit for
development (T0) would be related to Twarm and/or to
Tb was supported; the top-ranked model included both
these variables. The association between T0 and Twarm

is likely direct, reflecting the environmental tempera-
tures to which embryos are exposed during develop-
ment. The association between T0 and Tb is likely
indirect and related to nest site selection by gravid
females. Tb is are related both to habitat and to
phylogeny (Andrews, 1998, 2008a; Clusella-Trullas
et al., 2011), and females choose nest sites according
to their thermal preferences in the habitats where
they themselves live (Lin et al., 2008). As a conse-
quence, embryos will be exposed to nest temperatures
that correspond to adult preferences, as well as to
environmental temperatures.

Our hypothesis that species with large body sizes
would exhibit faster embryonic growth (higher Resid-
DRI) than species with small body size was rejected;
the model with adult body size as the predictor vari-
able was the second lowest ranked of all models for
ResidDRI (Table 2). Adult size thus does not affect
developmental rate independently of hatchling size
per se (ResidDRI controlled for hatchling size in our
analyses).

THERMAL BIOLOGY OF EMBRYOS AND

CLIMATE CHANGE

Observations on the thermal biology of adult ectother-
mic tetrapods (amphibians and reptiles) have been
used to predict how populations will respond to global
climatic change. This research agenda includes
studies that describe the relationship between geo-
graphical variation in thermal biology and global cli-
matic patterns (Clusella-Trullas et al., 2011), studies
that document local reduction in population density
and extinctions associated with climate change (Huey
et al., 2009; Sinervo et al., 2010), and studies that
predict future changes in species ranges and persis-
tence (Kearney, Shine & Porter, 2009; Sinervo et al.,
2010). To date, however, observations on the impact of
climatic change have focused entirely on the thermal
biology of adult individuals.

Climate change could have both positive and nega-
tive effects on squamate embryos, and hence poten-
tially mitigate or exacerbate impacts on squamate

populations. Some predicted climatic changes will
affect embryos more than adults. For example, global
temperature increases are asymmetrically distributed
over annual (Schwartz, Ahas & Aasa, 2006) and
diurnal timeframes (Karl et al., 1995; DeGaetano &
Allen, 2002); mean night-time temperatures are
increasing at twice the rate of corresponding daytime
averages (Easterling et al., 1997, 2000). This means
that, at least initially, in some places or for some
species, developmental rates will be enhanced,
whereas the ability of diurnally active adults to ther-
moregulate to preferred levels will be less affected
(Chamaillé-Jammes et al., 2006; Clarke & Zani,
2012). Because soil temperatures are lower than, and
fluctuate less than air temperature (Packard &
Packard, 1988), daytime nest temperatures will
increase less than night-time nest temperature. Mean
nest temperature will thus increase without a propor-
tional increase in maximum nest temperature. As a
result of asymmetrical warming, embryos will develop
faster overall and incubation length will be shortened
(Clarke & Zani, 2012). Shortened incubation periods
could reduce egg mortality and increase neonate
survival. These effects are, of course, dependent
on the extent to which (1) egg mortality is propor-
tional to the length of incubation and (2) early hatch-
ing conveys benefits such an enhanced growth or
survival (Shine, 1985; Warner & Shine, 2007). Where
successful development is currently limited by low
ambient temperature, for example, higher mean incu-
bation temperature will increase reproductive success
because embryos will develop at more favourable
temperatures (Lourdais et al., 2004; Hare, Pledger
& Daugherty, 2008). Moreover, increased length of
breeding seasons in the Northern Hemisphere
(Schwartz et al., 2006) will mean that early and late
clutches of multiple-clutching species will be exposed
to more favourable thermal conditions for develop-
ment and the number of clutches that can be pro-
duced per year may increase as well (Clarke & Zani,
2012).

On the other hand, because the optimal tempera-
ture for development (Topt) and the lower limit for
development (T0) are positively correlated with envi-
ronmental temperature and with the activity tem-
peratures of adults, the effects of climate warming on
embryos will likely exacerbate the thermal challenges
faced by adults. For example, climate changes that
force gravid females to be active at a relatively high
Tb (Huey et al., 2009; Sinervo et al., 2010), or to select
nest sites with temperatures that are outside the
OTR for development, would reduce hatching success
and produce hatchlings with low fitness. For many
species, even the modest changes in thermoregulation
and nest site selection that might ameliorate impacts
of climate change on development are not possible.
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For example, eggs of the tuatara incubate successfully
at very low nest temperatures; natural tuatara
habitat is limited to small islands off the coast of New
Zealand. The thermal refugia that would allow
tuatara to nest successfully will simply no longer
exist if temperature continues to rise (Nelson et al.,
2004; Huey & Janzen, 2008). This dire outcome has
already been realized for some populations of cool-
adapted lizards on isolated mountaintops (Sinervo
et al., 2010). The other side of this scenario is that
climate warming will facilitate the invasion of high
elevation habits by lowland species and rainforest
interior habitats by heliothermic species (Huey et al.,
2009). In this situation, the correlated adaptations of
embryos and adults to warm environments will
enhance their shift in geographical range at the
expense of species with cool adapted embryos and
adults.
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APPENDIX

Table A1. Species and sources

Family Species Source

Agamidae Agama impalearis El Mouden et al. (2001); Znari & El Mouden (1998)
Agamidae Calotes versicolor Ji et al. (2002); Qui et al. (2009); Radder et al. (2002)
Agamidae Calotes versicolor2 Vani et al. (2010)
Agamidae Chlamydosaurus kingii Christian et al. (1996); Harlow & Shine (1999)
Agamidae Ctenophorus decresii Harlow (2000); Greer (1989)
Agamidae Leiolepis reevsii Lin et al. (2007); Ji, pers. comm.
Chamaeleon Chamaeleon calyptratus Andrews (2008a, b)
Colubridae Elaphe carinata Ji & Du (2001b); Ji, pers. comm.
Colubridae Pituophis melanoleucus Burger & Zappalorti (1988); Gutzke & Packard (1987); Diller & Wallace (1996)
Colubridae Elaphe taeniura Du & Ji (2008); Ji, pers. comm.
Colubridae Dinodon rufozonatum Ji et al. (1999); Ji, pers. comm.
Colubridae Natrix natrix Löwenborg et al. (2010); Isaac & Gregory (2004)
Colubridae Ptyas korros Du & Ji (2002); Ji, pers. comm.
Colubridae Rhabdophis tigrinus Cai et al. (2007); Chen & Ji (2002)
Colubridae Tropidonophis mairii Bell (2010), pers. comm.
Colubridae Xenochrophis piscator Ji et al. (2001)
Colubridae Zaocys dhumnades Lin et al. (2010)
Elaphidae Naja atra Ji & Du (2001a); Lin et al. (2008); Lin et al. (2005); Ji, pers. comm.
Elaphidae Bungarus multicinctus Ji et al. (2007); Ji, pers. comm.
Gekkonidae Gekko japonicus Hu & Du (2007); Ji (1992); Tokunaga (1985); Ji, pers. comm.
Gekkonidae Eublepharis macularius Autumn & De Nardo (1995); Viets et al. (1993); Wise et al. (2009)
Gekkonidae Hemidactylus bowringii Xu & Ji (2007); Xu et al. (2007); Ji, pers. comm.
Gekkonidae Oedura lesueurii Doughty (1997)
Gekkonidae Paroedura pictus Blumberg et al. (2002); Kratochvil et al. (2006); Noro et al. (2009)
Iguanidae Dipsosaurus dorsalis DeWitt (1967); Muth (1977, 1980)
Iguanidae Anolis carolinensis Goodman (2007); Goodman & Walguarnery (2007); Sanger et al. (2008)
Iguanidae Cyclura nubila Alberts et al. (1997); Christian et al. (1986)
Iguanidae Sceloporus undulatus Andrews (1998); Andrews et al. (2000)
Lacertidae Eremias argus Hao et al. (2006); Zhao et al. (2008)
Lacertidae Podarcis muralis Amo et al. (2004); Brana & Ji (2000); Ji & Brana (1999); Van Damme et al. (1992)
Lacertidae Takydromus

septentrionalis
Du, Lu & Shen (2005a); Ji (1992); Ji et al. (1996); Du & Ji (2006); Yang et al.

(2008)
Lacertidae Takydromus stejnegeri Chen et al. (2010)
Lacertidae Takydromus wolteri Pan & Ji (2001)
Lacertidae Zootoca vivipara Rodríguez-Díaz et al. (2010)
Scincidae Bassiana duperryii Shine & Harlow (1996); Shine (1995); Telemeco et al. (2010)
Scincidae Ctenotus robustus Greg Brown, pers. comm.; Greer (1989)
Scincidae Eumeces chinensis Du et al. (2005b); Ji & Zhang (2001); Ji et al. (1995)
Scincidae Eumeces elegans Du et al. (2000); Du et al. (2003)
Scincidae Oligosoma suteri Hare & Daugherty (2002); Hare et al. (2004); Hare et al. (2008)
Varanidae Varanus albigularis Phillips & Packard (1994); Greer (1989)
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